
LLNL-PRES-738989
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

MPI Tool Interfaces
A role model for other standards !?
Martin Schulz

Lawrence Livermore National Laboratory

LLNL-PRES-681385
2

People using MPI might care about performance
— After all, it’s called High Performance Computing

Hence, people may want to measure performance
— Communication & synchronization is wasted time for computation
— Want to measure how much we waste

Why not add an interface
to MPI to enable this?

— Sounds trivial, right?

Still today very
uncommon!

The MPI 1.0 Team Had a Lot of Foresight

LLNL-PRES-681385
3

Simple support for interception of all MPI calls
— Enforced throughout the whole standard
— Coupled with name shifted interface

Easy to implement profiling tools
— Start timer on entry of MPI routine
— Stop timer on exit of MPI routine

The MPI Profiling Interface

Call MPI_Send

MPI_Send

MPI_Send
{ …

PMPI_Send()
}PMPI_Send

LLNL-PRES-681385
4

Intercepts all MPI API calls using PMPI
— Records number of invocations
— Measures time spent during MPI function execution
— Gathers data on communication volume
— Aggregates statistics over time

Several analysis options
— Multiple aggregations options/granularity

• By	function	name	or	type
• By	source	code	location	(call	stack)
• By	process	rank

— Adjustment of reporting volume
— Adjustment of call stack depth that is considered

Provides easy to use reports

The mpiP tool: Example of the Intended Effect

http://mpip.sourceforge.net/

LLNL-PRES-681385
5

The mpiP tool: Example of the Intended Effect

bash-3.2$ srun –n4 smg2000
mpiP:
mpiP:
mpiP: mpiP V3.1.2 (Build Dec 16 2008/17:31:26)
mpiP: Direct questions and errors to mpip-
help@lists.sourceforge.net
mpiP:
Running with these driver parameters:

(nx, ny, nz) = (60, 60, 60)
(Px, Py, Pz) = (4, 1, 1)
(bx, by, bz) = (1, 1, 1)
(cx, cy, cz) = (1.000000, 1.000000, 1.000000)
(n_pre, n_post) = (1, 1)
dim = 3
solver ID = 0

===
Struct Interface:
===
Struct Interface:

wall clock time = 0.075800 seconds
cpu clock time = 0.080000 seconds

===
Setup phase times:
===
SMG Setup:

wall clock time = 1.473074 seconds
cpu clock time = 1.470000 seconds

===
Solve phase times:
===
SMG Solve:

wall clock time = 8.176930 seconds
cpu clock time = 8.180000 seconds

Iterations = 7
Final Relative Residual Norm = 1.459319e-07

mpiP:
mpiP: Storing mpiP output in [./smg2000-p.4.11612.1.mpiP].
mpiP:
bash-3.2$

Header

Output File

LLNL-PRES-681385
6

mpiP 101 / Output – Metadata
@ mpiP
@ Command : ./smg2000-p -n 60 60 60
@ Version : 3.1.2
@ MPIP Build date : Dec 16 2008, 17:31:26
@ Start time : 2009 09 19 20:38:50
@ Stop time : 2009 09 19 20:39:00
@ Timer Used : gettimeofday
@ MPIP env var : [null]
@ Collector Rank : 0
@ Collector PID : 11612
@ Final Output Dir : .
@ Report generation : Collective
@ MPI Task Assignment : 0 hera27
@ MPI Task Assignment : 1 hera27
@ MPI Task Assignment : 2 hera31
@ MPI Task Assignment : 3 hera31

LLNL-PRES-681385
7

mpiP 101 / Output – Overview
--
@--- MPI Time (seconds) ------------------------------------
--
Task AppTime MPITime MPI%

0 9.78 1.97 20.12
1 9.8 1.95 19.93
2 9.8 1.87 19.12
3 9.77 2.15 21.99
* 39.1 7.94 20.29

LLNL-PRES-681385
8

mpiP 101 / Output – Callsites

@--- Callsites: 23 --

ID Lev File/Address Line Parent_Funct MPI_Call
1 0 communication.c 1405 hypre_CommPkgUnCommit Type_free
2 0 timing.c 419 hypre_PrintTiming Allreduce
3 0 communication.c 492 hypre_InitializeCommunication Isend
4 0 struct_innerprod.c 107 hypre_StructInnerProd Allreduce
5 0 timing.c 421 hypre_PrintTiming Allreduce
6 0 coarsen.c 542 hypre_StructCoarsen Waitall
7 0 coarsen.c 534 hypre_StructCoarsen Isend
8 0 communication.c 1552 hypre_CommTypeEntryBuildMPI Type_free
9 0 communication.c 1491 hypre_CommTypeBuildMPI Type_free

10 0 communication.c 667 hypre_FinalizeCommunication Waitall
11 0 smg2000.c 231 main Barrier
12 0 coarsen.c 491 hypre_StructCoarsen Waitall
13 0 coarsen.c 551 hypre_StructCoarsen Waitall
14 0 coarsen.c 509 hypre_StructCoarsen Irecv
15 0 communication.c 1561 hypre_CommTypeEntryBuildMPI Type_free
16 0 struct_grid.c 366 hypre_GatherAllBoxes Allgather
17 0 communication.c 1487 hypre_CommTypeBuildMPI Type_commit
18 0 coarsen.c 497 hypre_StructCoarsen Waitall
19 0 coarsen.c 469 hypre_StructCoarsen Irecv
20 0 communication.c 1413 hypre_CommPkgUnCommit Type_free
21 0 coarsen.c 483 hypre_StructCoarsen Isend
22 0 struct_grid.c 395 hypre_GatherAllBoxes Allgatherv
23 0 communication.c 485 hypre_InitializeCommunication Irecv

LLNL-PRES-681385
9

mpiP 101 / Output – per Function Timing
--
@--- Aggregate Time (top twenty, descending, milliseconds) ---
--
Call Site Time App% MPI% COV
Waitall 10 4.4e+03 11.24 55.40 0.32
Isend 3 1.69e+03 4.31 21.24 0.34
Irecv 23 980 2.50 12.34 0.36
Waitall 12 137 0.35 1.72 0.71
Type_commit 17 103 0.26 1.29 0.36
Type_free 9 99.4 0.25 1.25 0.36
Waitall 6 81.7 0.21 1.03 0.70
Type_free 15 79.3 0.20 1.00 0.36
Type_free 1 67.9 0.17 0.85 0.35
Type_free 20 63.8 0.16 0.80 0.35
Isend 21 57 0.15 0.72 0.20
Isend 7 48.6 0.12 0.61 0.37
Type_free 8 29.3 0.07 0.37 0.37
Irecv 19 27.8 0.07 0.35 0.32
Irecv 14 25.8 0.07 0.32 0.34
...

LLNL-PRES-681385
10

But then something happened …

Tool developers
got very creative!

LLNL-PRES-681385
11

Record each invocation of an MPI routine
— Lead to broad range of trace tools (e.g., Jumpshot and Vampir)

Inspect message meta-data
— Lead to MPI correctness checkers (e.g., Marmot, Umpire, MUST)

Inspect message contents
— Transparent checksums for message transfers

Run applications on reduced MPI_COMM_WORLD
— Reserve nodes for support purposes (e.g., load balancers)

Replace data types to add piggybacking information
— Useful to track critical path information

Replace MPI operations
— Ability to modify/re-implement parts of MPI itself

The Profiling Interface can do so much more!

LLNL-PRES-681385
12

Transparent cloning of MPI processes

Extreme example: MPIecho

[Barry Rountree]

LLNL-PRES-681385
13

Extreme Example: MPIecho

— Receives -> Bcast— Send -> No-Op + 1 Send

Implemented through PMPI wrappers

Enables parallelization of tools
— Fault injections
— Memory checking

LLNL-PRES-681385
14

Transparent cloning of MPI processes

Extreme example: MPIecho

[Barry Rountree]

LLNL-PRES-681385
15

PMPI has led to robust and extensive MPI tool ecosystem
— Wide variety of portable tools

• Performance,	correctness	and	debugging	tools
— Use for application support

PMPI, however, also has problems
— Implementation with weak symbols is often fragile
— Allows only a single tool
— Forces tools to be monolithic

This led to the development of PnMPI & the QMPI efforts

The State of MPI Tools

Application
PMPI Tool 1
MPI Library

Application
PMPI Tool 2
MPI Library

Application

MPI Library

PN
M

PI

Application
PMPI Tool 1
PMPI Tool 2
MPI Library

PMPI Tool 2

PMPI Tool 1

LLNL-PRES-681385
16

The PMPI definition impacts the whole standard
— Even where one doesn’t expect it

• Maximal	name	length
• Fortran	bindings
• Threading

— Needs attention to be maintained

PMPI only allows to track application visible information
— Does provide access to internal information
— MPI_T was added to MPI 3.0 to solve this problem

• After	previous	failed	attempts	(like	PERUSE)
— MPI can offer internal state for performance and configuration

• But	MPI	can	decide	what	to	provide	and	under	what	name

New proposal on MPI_T events in the works
— Callbacks in certain events
— Provides better support for tracing tools
— Again leaves freedom to MPI implementations
— Targeted for MPI 4.0

The Impact on the MPI Standard

LLNL-PRES-681385
17

Other standards are picking up

LLNL-PRES-681385
18

Goal: enable tools to gather information and associate costs
with application source and runtime system

— Hooks for tracing and sampling
— Minimal overhead
— Low implementation complexity
— Mandatory vs. optional parts

Call-stack stitching
— Create user-level view
— Hide runtime impl. details

Status:
— Active API design with outside

partners in OpenMP committees
— Included in OpenMP 5.0 draft

Other standards are picking up: e.g., OMPT

LLNL-PRES-681385
19

The wide-spread use of PMPI is still very unique
— Combined with MPI_T interface(s) provide unprecedented options
— Still exploring the opportunities

But:

MPI does not provide an ABI
— Requires re-compilation of tools for MPI
— Reduces portability and maintainability of tools
— Other standards are specifying all types fully

New MPI interfaces are non committal
— MPI can decide what to offer, if anything
— Names not standardized
— Other standards are allowing more concrete specifications

But are they overtaking MPI?

LLNL-PRES-681385
20

MPI provides a strong tool ecosystem
— PMPI is the cornerstone since MPI 1.0
— Developers found creative way to exploit it
— MPI_T interface(s) augment it

Wide range of tools have bee developed
— Performance analysis with Profilers and tracers
— Correctness tools (in combination with debuggers)
— Application support tools

MPI always has been a role model for tool interfaces
— Early adoption in MPI 1.0
— Generally broad support in the MPI Forum
— Strong engagement from tool and MPI developers

But other standards are catching up and MPI could learn
something from these efforts as well

— ABIs would make tool maintenance and deployment easier
— More concrete requirements on tool support would be helpful

Summary

